

Current Remediation Technologies for Brine Spills

- Dig and Haul
- Amend and/or Flush

Protective of an aquifer? Chloride?

Cap

Generally not acceptable to land owner

• Others??

Electrokinetic Remediation?

Application of direct current (DC) electricity to the soil

 Polarized electrodes invoke movement of pore water and ions contained in the pore water, even in low permeability soils

Electrokinetics

 Electroosmosis – Movement of pore water and contaminants toward the cathode

 Electromigration – Migration of ionic species toward respective electrodes (anions toward anode, cations toward cathode) by electrical attraction

Principles of Electrokinetics

Electroosmosis = Water Transport from anode to cathode Electromigration = Ion Transport to the opposite electrode

Electrokinetic Applications

- Environmental Remediation
 - Heavy Metals (lead, chrome)
 - Organic Solvents (with in-situ ZVI)
 - Others (arsenic, nitrate, ISCO, bio-amendments)
- Dewatering/Stabilization
- Desalinization

EK works in saturated & unsaturated zones

How EK Desalinization Works

- Sodium ions migrate toward the cathode by electromigration and electroosmosis where they are removed
- Chloride ions migrate toward the anode by electromigration, where they are removed or oxidized to chorine
- The removed cathode and anode streams are combined as brine and disposed/injected or beneficially reused

EK Desalinization Application

Electrode Pattern

Model simulates removal from a cylinder with no flow boundary and central sink

Field Scale Design

- Readily available equipment and parts (lowest costs)
- Electrodes are installed like miniature wells
 - Slotted 1" PVC well screen (24 cathodes, 69 anodes)
 - DSA wire wrapping as primary electrode
 - Backfill annulus with cathodic backfill material (example-Loresco SWS®)
 - Installed with hydraulic push (Geoprobe®) or small drill rig
- Extraction equipment is multi-head peristaltic pumps (peristaltic) operated on a timer
- Passive as possible operation
- Site remained saturated with precipitation providing enough water (some mild flooding)

EK Desalinization Process

Operations To Date

System began operations June 2, 2016 System shut down for winter October 13, 2016

Voltage and **Current** Trends over Time

Site Overall Electrical Conductance Based on Rectifier Output

Discharge Tanks Conductivity

Field Temperatures Near North and South Tanks

Chloride Removal

- Model predicts 300+ days for the chloride to reach anodes (2D, cylindrical, transient)
- Soil samples were collected after 110 days of operation
- Matched samples collected before and end of summer operations (8 locations, 2 depths, n=16) show 41% removal
 - Site conductance data confirms chloride removal
 - EM Surveys inconclusive

Chloride Soil Data

	4/19/2016					9/20/2016				Chloride		
Hex	L	Depth	Chloride	Sodium	рН	Cond	Chloride	Sodium	рН	Cond	Reduction	
			ppm	ppm	su	us/cm	ppm	ppm	su	us/cm		Anode
15	1	3-4	7,310	3,250	7.5	17,600	4,400	1,590	7.77	12,900	40%	
		7-8	9,700	4,860	7.2	21,400	10,000	3,070	7.27	21,400	-3%	
17	2	3-4	5,660	2,470	7.3	14,400	3,110	1,580	7.71	12,400	45%	
		7-8	6,020	3,140	7.4	15,200	4,160	1,470	7.94	16,200	31%	
5	4	3-4	5,300	2,170	7.4	12,600	4,140	1,140	7.84	8,020	22%	
		7-8	6,300	2,970	7.2	14,600	4,490	1,340	7.27	10,200	29%	
2	6	3-4	3,970	1,720	7.4	11,000	2,480	632	8.18	4,450	38%	
		7-8	8,600	3,390	7.4	19,100	5,520	1,810	7.86	12,000	36%	
8	8	3-4	3,200	1,540	7.6	9,170	850	418	8.36	2,640	73%	
		7-8	8,560	3,970	7.6	18,800	1,470	1,650	7.96	15,800	83%	
23	9	3-4	6,040	2,270	7.4	14,500	718	352	8.76	2,270	88%	
		7-8	9,470	3,640	7.3	20,500	5,880	3,760	7.74	24,200	38%	
												Cathode
	Av	verage	6,678	2,949	7.39	15,739	3,935	1,568	7.89	11,873	41%	
Started		6/2/2016			Sampled	9/20/16				110	days	

Lessons Learned to Date

- Chlorine gas generated at anode (expected)
- Choose materials and pump equipment wisely
- Needed to upsize wellhead generator to handle jack pump and rectifier

For Consideration

- Use of plastic venturi pumps down hole for fluid management?
- Can the system be operated to convert all chloride to chlorine?
- Reverse-pulse operations may even out the conductivity gradients and increase chloride removal
- Low voltage, high current DC requirements begs solar power

Conclusions

• EK desalinization is working at the demonstration site

Regulators and Corporate on board

• If it works at this site, it can work at most any site.

Many Thanks!

- To Oasis Petroleum for believing in this process and allowing the trial at this site
- To US Fish and Wildlife Service and the North Dakota Dept of Health for guidance and support
- Habitat Management, American Engineering and Testing, Vertex, Three Forks Environmental for site support